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Abstract—Worldwide energy markets have been on a path to-
ward deregulation for several decades. These markets have proven
to be difficult to design and run because of their repetitive na-
ture and the externalities provided by reliable grid operation. In
a deregulated market environment, our experiments suggest that
market participants will pursue their own profit-maximizing ob-
jective rather than use an objective that reflects social benefit. Mul-
tiagent simulation is useful for gaining insights into market partic-
ipant behavior under various rules. In this way, market rules can
be tested for efficacy and efficiency. In this paper, an agent based
on a double-layer diffusion model developed elsewhere [1] is tested
and its effectiveness reported.

Index Terms—Agent, auction, degree of speculation, diffusion,
maximum offer price, nonlinear dynamics, numerical optimiza-
tion.

I. INTRODUCTION

RECENT changes in the electric power industry over sev-
eral decades have led to a less regulated energy market.

In all restructured markets, auctions play a major role in de-
termining both the price for electricity as well as generation
set points. Market participants make bids and offers, and an
independent system operator (ISO) clears the market. We pre-
sume that the objective of market participants is to maximize
their own profit. Within this framework, a strategic offer strategy
must be developed by each participant. Conventional economic
modeling approaches have shown a limited ability to explain the
strategic behavior of some generating firm, primarily because of
the complex cognitive behavior associated with participating in
a repeated auction.

Sheble et al. [2]–[4] designed an agent using a genetic algo-
rithm that operates in a simplified market and with zero fore-
cast error. Each agent, including suppliers and consumers, can
submit both price and quantity for only one block of energy.
The system operator then clears the market, and the agents are
paid according to the rules of a discriminatory auction. In such
a setup, the offer price and quantity can be assessed relative to
its profit, which allows the agent to update future offers. How-
ever, the assumptions of one block offers, no forecast error, and
a discriminative auction are very different from any real market
in operation today.
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The autonomous agent designed by Bunn et al. [5]–[7] has
been applied to a market that assumes a lossless network and
no line constraints. Unlike the work of Sheble et al., they allow
an agent to offer several blocks. The price and quantity of each
block are determined by a linear supply curve defined by two
end points that are assigned by reinforcement. The reinforce-
ment algorithm is used to create the parameters that determine
offer price and quantity of the blocks. Once all the offers are
submitted, a system operator clears the market. The simple na-
ture of reinforcement algorithm allows the agent to work in a
nondiscriminatory auction. However, an agent characterized by
a linear offer curve may not successfully emulate a real market
since the generally observed shape of a supply curve in a uni-
form price repeated auction is a hockey stick.

In comparison to the work described above, the agent devel-
oped by Oh et al. [8] works well in a more realistic market.
The technique cannot accommodate a network with line con-
straints or losses, but it can accommodate forecast error and
stochastic demand. Supply-side agents are allowed to submit
several blocks and to update their offer strategies based on the
results of their participation in a market. The block offers are
connected with each other by a fitting equation whose shape is a
hockey stick. However, there is an initial value dependence. Fur-
thermore, it is difficult to determine which parts of the data are
relevant for estimating a future state. Consequently, a large and
perhaps inappropriate amount of data may be required, which
may result in a high computational cost and inaccuracies in any
future estimates.

In this paper, a numerical optimization process is used to find
a set of parameters for an optimal offer based on a double layer
diffusion model developed by the authors [1]. The behavior of
the agent depends on its assessment of the behavior of its com-
petitors. According to nonlinear dynamic theory [9], a change
in state dimension implies that a dynamic system has changed
to either a new equilibrium or to a chaotic state. If a system un-
dergoes change in its state dimension, the Liapunov dimension
yields an estimate of how fast it approaches the new state. To
identify any change in the offer strategies of competitors, this
theory is applied and the simulation results are discussed.

II. SIMULATION ENVIRONMENT

Agents develop rules for themselves based on the rules of
the auction they are participating in and, in repeated auctions,
based on the actions of their competitors. In the design con-
sidered here, the electricity market is assumed to be based on
locational marginal pricing (LMP) with both supply and de-
mand-side participation [10]. Time-varying stochastic load de-
mand is assumed. The network for the simulation is a system
shown in Fig. 1, which is modified from the IEEE 30-bus system
of reference [11]. The line capacities connecting Area 2 with
rest of the system have been modified in order to generate a load
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Fig. 1. Modified IEEE 30-bus system with six suppliers. The capacities of lines
connecting Area 1-Area 2 and Area 3-Area 2 are lower than those of other lines.

pocket. Furthermore, the locations of some generators were also
changed. In this market and for this example system, an ISO pro-
vides a load forecast and collects the offers and bids submitted
by six participating agents. The ISO then clears the market and
checks the security of the system.

In every period, each supply-side and demand-side agent is
asked to submit a price and quantity. The ISO then runs an ac
optimal power flow (OPF) to clear the market. All dispatched
quantities are paid their LMPs. After the auction has been
cleared by the ISO, each agent receives private information
such as its dispatch quantity and price. LMPs are publicly
available information.

Each supply-side agent could submit offers for as many as 30
blocks. Based on its maximization algorithms, available histor-
ical data, and load forecast, each agent decides the quantity and
price it will offer. Exchange of information among agents is not
allowed. However, it was assumed that a supply-side agent had
access to information about the network.

III. MARKET MODELING

To explain experimental results performed on an unknown
complex system, a linear combination is one of the most pow-
erful and commonly used techniques in quantum mechanics.
When there exists a basis set, an unknown market can be ex-
pressed in terms of the set in conjunction with the probability
distribution.

It is possible to identify offer behavior in terms of a basis
set. If the basis set is orthonormal, the probability of each set
is simply an inner product between each set and the unknown
market. However, the form of a basis set is not necessarily ex-
pressed by an offer curve. Suppose there is a convenient set in

which to express offer behavior such as the weak speculators
(WS), strong speculators (SS), etc. discussed in [1]. Then the
elements in the set can be spanned in terms of the basis set since
they exist in an offer space.

It is important to note that all the information about the net-
work is embedded in the elements of the basis set. If the chosen
set has a large enough number of elements, there exists an in-
verse relation that allows an inverse expansion or projection to
the offer space. Consequently, one can find an expansion of an
unknown offer behavior in terms of a known offer set with a
weighting factor distribution. Therefore, it is possible to classify
offer behavior as was shown in [1] under the mild assumptions
that there are enough elements in the set and that the unknown
offer is consistent. An insufficient set will result in a proper clas-
sification but with an error. The classification is not wrong as
long as all the extreme offer behaviors are included in the set.
Inconsistent offer behavior will lead to an overall offer behavior
that could be classified properly if different behaviors are cor-
rectly analyzed.

Similarly, the state of a market is a cumulative sum of the
effects of individual agents in the market. It is easier to model
an individual agent than an unknown market, especially when
network effects are considered. Suppose there is a market with
known offer behaviors for each of its participants. Then the
market can be expressed in terms of the cumulative offer be-
haviors of the competitors in the set, which is termed a scenario.
Consequently, a market with unknown offer behavior can be ex-
pressed in terms of known offer behavior or scenarios. Then any
experimental observations can be interpreted as the cumulative
sum of participation in each scenario.

If a market’s state does not change, then participation by
competitors must have driven it parallel to its eigenvectors. In
general, an orthonormal basis set is commonly selected due to
the calculation convenience. For an unknown market, it is not
possible to derive eigenvectors analytically or experimentally.
When a market is expanded in terms of an arbitrarily set, the
coefficients imply the weight factor distribution since the set
is no longer a complete basis set. One can write an expression
that describes market participation in terms of, for example, the
earnings of an agent with given weight factor distribution c, as
follows:

...
...

. . .
...

...

...
(1)

where the elements in the square bracket on the left-hand side
1 represent the earning of an agent for an offer

for a market with a specific scenario , i.e., a simu-
lated earning from the known scenario. The earnings on the

1 means that offer under rules produced an earning
of $4/hr where is the operator that maps offer to earning under rules .
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right-hand side of (1) are actual earnings for the same offer
submitted into an actual market . When a scenario is found
to be irrelevant to the expression describing the market, the
scenario set can be modified without recalculating the entire
matrix.

A well-defined weight factor distribution minimizes the dif-
ference between the inner product on the left-hand side and the
vector on the right-hand side. Since the set is arbitrarily chosen
and implemented given an uncertainty in earnings, the simu-
lated earnings must contain errors. In this paper, the two-norm
is used for the error minimization problem. The error minimiza-
tion yields an optimal weight factor distribution, which allows
one to model an unknown market. It is possible to evaluate earn-
ings from a known market at a given offer . Con-
sequently, earnings from an unknown market can be
estimated by using the optimal distribution from which one can
construct a numerical function mapping offers to earnings.

IV. SUPPLY-SIDE AGENT

To check for any change in the strategy of other agents,
state dimension and its Liapunov exponent are calculated. The
market situation is evaluated by using data obtained during a
period where there is no change detected. Based on historical
data of forecast and actual demand obtained under the same
market situation, actual demand for the next period is estimated
using a neural network. With a given estimated demand, an
agent could construct a numerical mapping function from
offer to earnings. Theoretically, it is also possible to find an
optimal offer analytically since the weight factor distribution
does not depend on the offer. However, it needs multiple
function evaluations, which is computationally expensive. A
trust-region method [12] has been used successfully to find an
optimal solution with minimal function evaluation. Since all
offer parameters have upper and lower bounds [1], it is suitable
for this problem to use the trust-region method for nonlinear
optimization subject to bounds.

V. SIMULATION RESULTS AND DISCUSSION

Several simulations were performed using the agents de-
scribed in the previous sections. All demand-side agents had a
must-serve demand of about 10% [10]. To see the performance,
only one supply-side agent was used while standardized agents
described in [1] represented other firms. To emulate different
situations, several markets with different distributions of com-
petitors ranging from competitive to volatile were simulated.

The agents were tested in terms of their reaction to a perma-
nent and consistent change in strategy by others. For the test, a
competitor changed its strategy completely and can detect the
change in strategy. In one simulation after 253 periods, Firm 6
changed its strategy while Firms 1–4 did not. The results for his-
torical nodal price data obtained from competitive and volatile
markets are shown in Fig. 2.

Before Firm 6 changes its strategy, the relative errors between
simulated and actual earnings of the agent representing Firm 5
were about 65%. Modification of the scenario set reduces the
error to 59%. With the new modified scenario set, the agent tried
to find an optimal offer for given load forecast.

Fig. 2. Historical data for nodal prices of Firm 5 when Firm 6 changes its
strategy from marginal cost offer to speculator.

Fig. 3. Daily dimension check for the historical nodal price data obtained from
the simulation described in Fig. 2.

The dimension check was performed in terms of detecting a
possible change in strategies of other competitors. Fig. 3 shows
that the dimension check detects a possible change in the state
of market about four days after Firm 6 changes its strategy. Note
that at least 100 data points are required to evaluate the dimen-
sion with a value of 2 or higher for statistical reasons. Several
such simulations were run and showed that the dimension check
reliably detects the changes in market state.

When the state of the market changes, it is important to find
how long the change takes to settle down a new state. The ques-
tion can be answered by evaluating Liapunov exponent. In gen-
eral, it takes two times the inverse exponent for the system to
reach equilibrium. Fig. 4 shows the results of an evaluation of
the exponents. In days 12 and 16 after the change was made,
the exponents take very small values while most others are neg-
atives. In evaluating the Liapunov exponent, only a few points
were randomly taken to avoid choosing biased data, and the ac-
tual value of the exponent greatly depends on the choices made
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Fig. 4. Results of Liapunov exponent calculation performed with the historical
nodal price data obtained from the simulations described in Fig. 2.

in selecting the points. Consequently, the value of the exponent
is less reliable when it is small. For negative or zero values of
the exponent, an agent chooses a default number of data for cal-
culating weight factors. When the exponent has a large positive
value with a small error, it says that the system settles down to a
new equilibrium quickly. A small positive exponent value like
in these cases implies that the dynamics are very slow, in which
case many data points are relevant to the future estimate. Since
the exponent tells how recent data are relevant to estimating a
future state, it only gives an upper limit for the number of data
that an agent must choose. In both cases here, more than 100
data points are at their upper limits.

From the results of the dimension check, the performance of
an agent before finding the change in state seems as good as
that after finding it. A dimension check and Liapunov exponent
allow an agent to choose relevant data. Before a change of state,
a dimension check gives no change and a Liapunov exponent
calculation gives a negative value. In this case, an agent is al-
lowed to have only 100 data points. Before the agent realizes a
change in state has occurred, several new data have been added
into the 100 data points. Consequently, the effect of the new
addition is not negligible. Without using the dimension and ex-
ponent, the agent will carry all the data, and then the effect of
adding new data is small enough to be ignored. Thus, the per-
formance could not be comparable to an optimal one. For a ran-
domly generated offer, the nodal price fluctuates substantially
as is shown during a learning period in Fig. 2. Once the agent
finds a proper weight factor distribution, the price is not below
$500/MWh.

The agent finds an optimal offer to maximize its profit with a
given weight factor distribution and forecast. As was mentioned
before, the agent manages to keep the nodal price no less than
$500/MWh while the price fluctuates at random offers. Fig. 5
shows the historical and estimated earnings. The average error
after learning period and before the change in the strategy of
Firm 6 was 17% and that after the change was 1%. A compet-
itive market requires an agent to explore offer-earning surface

Fig. 5. Historical data for the actual and expected earning of Firm 5 in black
and gray lines, respectively.

widely, which needs more basis set. With the given number of
the basis set, the error would be larger in a more competitive
market than that in a less competitive one.

To study an offer strategy, the degree of speculation2 and the
maximum offer price3 described in [1] from the learning period
and periods before and after the sudden change are plotted in
Fig. 6(a). Both graphs in the first row of Figs. 6(a) show the vari-
ables chosen for offers during the learning period. The graphs
in the second and third rows illustrate the variables before and
after the sudden changes. The second row corresponds to the
simulation against more competitive agents. The variables from
the simulations against more competitive agents seem to fluc-
tuate more often, but it is difficult to find any difference in the
offer strategies between before and after the change.

The ratio between the two variables was calculated and
plotted in Fig. 6(b). The data clearly show that the ratio in-
creases when the market becomes less competitive.

When the market is less competitive, the agent can take ad-
vantage of the other agents by being less speculative. This re-
sults in reducing the value of the degree of speculation and/or
offering more quantity into the market. Both cases increase the
ratio by decreasing the denominator and by increasing the nu-
merator from the former and latter case, respectively. Note that
the agent would increase its earning in a competitive market by
being more speculative when the agent has locational benefit.

For testing the performance for the case where the agent does
not have a locational benefit, a simulation was performed with
an agent participating on behalf of Firm 1 in the same situation
described before. The results are shown in Fig. 7.

Similar to the previous case, the changes in the price at Bus
1 are approximately identical to those in the case described in
Fig. 2. The height and the frequency of the price spikes are a
little lower than before. Before Firm 6 changes its strategy, the
relative error was about 58%. For a better estimate, the agent
modifies the scenario set modeling its neighboring competitors

2The distance from the fair share to the quantity that deviates from a low price
offer

3The highest price appeared on an offer curve.
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(a)

(b)

Fig. 6. (a) Degree of speculation and the maximum offer price changes over pe-
riods obtained; horizontal lines indicate the mean values of the variables within
the period shown on the horizontal axis. (b) Ratio of the maximum offer price
to the degree of speculation over the periods shown on the horizontal axis; the
corresponding values of both variables are shown in Fig. 6(a).

Firm 2, 3, and 4 while leaving scenarios for Firm 5 and 6
unchanged. Modification of the scenario set described above
makes error reduced to 51%. With the new modified scenario
set, the agent tried to find an optimal offer at given load
forecast.

A daily dimension check was also performed to check a pos-
sible change in strategies of other competitors. Fig. 8(a) shows
that it detects a conceivable change in the state of market in a
couple of days after Firm 6 changes its strategy. For the changed
market, the agent evaluates the Liapunov exponent in terms of
detecting the duration of the change to settle into a new state.
Fig. 8(b) shows the results of evaluation to the exponents. No ex-
ponents before and after the change have sufficiently large posi-
tive values. The results imply that there was a consistent change

Fig. 7. Historical data for nodal prices at the Bus 1, which has no locational
benefit; Firm 6 changes its strategy in a more speculative way completely at the
period of 253.

Fig. 8. Daily check for a) dimension and b) Liapunov exponent calculated with
the historical nodal price data obtained from the simulations.



1734 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 4, NOVEMBER 2006

Fig. 9. Ratio between the variables over several periods.

in the strategies of its competitors, and the market settled into
a new state quickly. At Day 9, the Liapunov exponent shows a
positive value, but the dimension check implies no change in the
state. In such a case, the Liapunov exponent is ignored since the
dimension is more reliable.

For showing the offer behavior of the agent, the ratio between
the two variables was calculated and plotted in Fig. 9. The fig-
ures clearly show that the ratio decreases when Firm 6 becomes
more speculative, i.e., the market that the agent faces is less
competitive. It is an interesting result since the ratio changes
in the opposite direction when the agent has a locational advan-
tage. When the market is less competitive, the agent can take
advantage of the other agents. However, the market does not
become sufficiently volatile due to the change in the strategy of
Firm 6. Consequently, the agent may have options; it can make
the market more volatile by submitting more speculative offers,
or it can take a smaller advantage out of the change. In the en-
vironment of the simulation, the process finds that being more
speculative is better. In terms of cooperating with the firm that
changed its strategy, the agent tries to help by withholding more
or submitting more speculative offers.

The former decreases the maximum offer price while the
latter increases the degree of speculation. Consequently, the
ratio between two variables decreases when the competitor
changes the strategy to a more speculative way. For an agent
without locational benefit, its generating unit may not be re-
quired to meet the demand. In such a case, speculation may
increase the probability that its unit does not get dispatched.
In order to avoid the situation, it tries to compete against
other firms. Then it may decrease the degree of speculation or
withhold less quantity. Therefore, the ratio increases, which is
the opposite case when the agent has locational benefit.

The agent manages to keep the nodal price about $500/MWh
and $900/MWh before and after the change in the strategy of
Firm 6, respectively. Fig. 10 shows the historical and estimated
earnings from the simulation. The error after the learning period
and before the change in the strategy of Firm 6 was 19%, and
that after the change was 1%.

Fig. 10. Historical data for the actual and expected earning of Firm 1 in black
and gray lines, respectively.

VI. CONCLUSIONS

Agent-based simulations provide insights into strategic be-
havior in a large nonlinear system like the electricity power in-
dustry. With the double layer diffusion model, an offer curve
can be constructed by using several parameters. Modeling an
unknown market along with the parameters allows to construct
a numerical function mapping from offer to earning.

Nonlinear dynamic theory can be used to identify a change
in behavior successfully by using available data. The ratio be-
tween the parameters determining offer curve is an important
parameter to understand the offer strategy of an agent in a given
condition. The locational benefit plays a critical role in deter-
mining the optimal offer strategy.
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